Contents

1 Install

1.1 Requirements ... 1
1.2 Installation and run ... 2

2 Files

2.1 File Formats ... 5
2.2 Minimal guide to obtain biclustering results 8
 2.2.1 Outside BicOverlapper 8
 2.2.2 Inside BicOverlapper 8

3 Data Visualizations

3.1 Microarray Heatmap ... 13
 3.1.1 Sampled microarray heatmaps 14
3.2 Parallel Coordinates .. 15
 3.2.1 Sampled parallel coordinates 16
3.3 TRN Graph .. 16
3.4 Word Cloud ... 17
 3.4.1 Word Cloud Performance 19
3.5 Bubble Map ... 19
3.6 Overlapper .. 20

4 Data Interaction

5 Configuration

5.1 Color configuration ... 25
5.2 Projects ... 26

6 Usage: A practical case

6.1 Microarray Data Analysis 27
6.2 Word Cloud Analysis ... 31
6.3 TRN Data Analysis ... 32
6.4 Bicluster Analysis with Bubble map 33
6.5 Bicluster analysis with Overlapper 34

Bibliography 43
List of Figures

2.1 GML format .. 7
2.2 Post-filtering and write biclusters interface. 9
2.3 Bimax biclustering interface. 9
2.4 Xmotifs biclustering interface. 10
2.5 Cheng and Church biclustering interface. 10
2.6 Turner’s plaid model biclustering interface. 11

3.1 Heatmap visualization ... 14
3.2 Parallel coordinates visualization. 15
3.3 TRN Graph visualization. 17
3.4 Word cloud visualization. 18
3.5 Bubble map visualization. 19
3.6 Overlapper visualization. 21

5.1 Color configuration panel for Overlapper. 26

6.1 Microarray data file open dialog. 27
6.2 Microarray heatmap. .. 28
6.3 Parallel Coordinates. ... 29
6.4 Word Clouds example. ... 31
6.5 Parallel Coordinates, Heatmap and TRN. 32
6.6 Bubble map and the other visualizations. 34
6.7 Overlapper and the other visualizations displayed altogether. 35
6.8 Overlapper linkage with other visualizations. 36
6.9 Overlapper filtered by filtering out the nodes grouped less than three times. .. 37
6.10 l_{rp} selection and Overlapper. 38
List of Tables

1.1 Tested Platforms for BicOverlapper 1.4 .. 1
2.1 Microarray Data File Format ... 6
2.2 Bicluster File Format ... 6
3.1 Data Visualizations ... 13
5.1 Color configuration activation ... 25
1 Heatmap Interface ... 39
2 Parallel Coordinates Interface ... 39
3 TRN interface .. 40
4 Word Cloud interface .. 40
5 Bubble map interface ... 40
6 Overlapper interface ... 41
1.1 Requirements

BicOverlapper has been tested for the platforms in Table 1.1. Developed in Java, it is expected to work under other Operating Systems that support the required JRE version and with enough disk and RAM.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Memory</th>
<th>RAM</th>
<th>JRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows XP</td>
<td>50MB</td>
<td>1GB</td>
<td>1.6.0.01</td>
</tr>
<tr>
<td>Windows Vista</td>
<td>50MB</td>
<td>1GB</td>
<td>1.6.0.01</td>
</tr>
<tr>
<td>Ubuntu 8.0 (Debian)</td>
<td>50MB</td>
<td>1GB</td>
<td>1.6.0.01</td>
</tr>
</tbody>
</table>

This version of BicOverlapper integrates biclustering analysis of microarrays and requests for gene information, by means of the statistical package R and BioConductor. Therefore, in order to load and analyze gene expression matrices, R 2.8 or higher must be installed, with the following requirements:

- R_{HOME} must be set to the R folder containing the folders bin, doc, library, etc. (for example: C:/Program Files/R/R-2.8.1)

- The package rJava must be installed to allow R-Java communication. It must be installed in the $R_{\text{HOME}}/\text{library}$ folder and not anywhere else. This is specially important in systems like Windows Vista or Linux with rigid user accounts, where libraries are installed in specific user folders. In R, you can change the folder to which libraries are installed with the lib parameter on $\text{install.packages()}$ method or check the default library paths with .libPaths() (note that you must also have writing permissions for $R_{\text{HOME}}/\text{library}$). Or you can run R as administrator to install the packages (for example, in Windows Vista, right-click on the R icon and select run as administrator). If rJava

is not properly installed in \texttt{R_HOME/library}, the program will exit with the following error:

\begin{verbatim}
Creating Rengine (with arguments)
Cannot find JRI native library!
java.lang.UnsatisfiedLinkError: no jri in java.library.path
\end{verbatim}

- \texttt{R.dll} must be in the path. If it isn’t, you will get an error similar to this one:

\begin{verbatim}
Creating Rengine (with arguments)
Cannot find JRI native library!
java.lang.UnsatisfiedLinkError: C:/Program Files/R/R-2.4.0/library/rJava/jri/jri.dll: Can’t find dependent libraries
\end{verbatim}

Finally, BicOverlapper should be able to install additional required R/BioConductor packages on the fly, but it is recommended to install them off-line, following the same requirements that the \texttt{rJava} package above. The required packages are:

- \texttt{biclust}: This package is used to perform biclustering analysis of gene expression matrices. If it is not properly installed, the analysis menu will be disabled or not working.

- \texttt{GO.db, annotate}: These packages are used in order to manipulate GO annotations for the genes in the expression matrix, providing that they were proper IDs for the corresponding microarray database package (see more about how to specify microarray annotation packages in section 2.1). If it is not properly installed, GO details and GO significant tests won’t work.

- \texttt{GOstats}: This package is used to perform hypergeometric GO significance tests. If not properly installed, these kind of tests will be disabled or not working.

- \texttt{annotation packages}: In the case of microarray platforms with an available BioConductor annotation package, if it is properly installed and specified (see section 2.1), gene annotations and GO tests will be available. For example, if the expression matrix comes from Affymetrix Yeast Genome S98 chips, then \texttt{ygs98.db} package should be installed.

For any issue, please contact with rodri@usal.es, providing the details of your problem running BicOverlapper, along with your platform characteristics.

1.2 Installation and run

To obtain the framework, go to \texttt{vis.usal.es/bicoverlapper} and take the latest version in the downloads section. Please note that alpha versions can still have some bugs. After downloading the package, please follow these steps:

1. Unzip the downloaded file wherever you want it to be installed
2. Open the unzipped folder
3. Depending on the OS:

- **Windows**: Double click on file `bicoverlapper.bat` or write in the command line `bicoverlapper.bat`
- **Linux**:
 - Check that `bicoverlapper.bat` has execution privileges. If not, give them with `chmod +x bicoverlapper.bat`
 - Run the application with `./bicoverlapper`

If everything is ok, BicOverlapper should start right now. If it does not start or closes suddenly after loading a expression matrix, it is possibly a problem of requirements (see section 1.1)
Chapter 2
Files

2.1 File Formats

Three different kinds of files can be loaded by BicOverlapper:

- **Microarray:** Gene expression data with expression levels, sample and condition names, species and platform (extension .txt)
- **TRN:** Transcription Regulatory Network with information about what is known about how gene transcription works for a determinate organism (extension .xml or .gml)
- **Biclustering Results:** the base of BicOverlapper, the set of biclusters returned by one or more biclustering techniques (extension .bic)

The three files can be opened for the same analysis: the more information we have, the deeper understanding of the problem we will get. Microarray data and bicluster data have delimited text formats as described in Tables 2.1 and 2.2, respectively.

The **microarray format** has, in rows, the expression level for each gene/probe set and the species and chip name. The first column contains the gene or probe set names, and the first row the condition (array) names. The first column of the first row contains information of the organism name and the array platform, separated by a bar (organism/platform). The name of the organism should follow the standard species name, just as NCBI stores it (for example, for human it should be Homo sapiens). If the microarray platform has a corresponding BioConductor annotation package, such as hgu95av2.db for the platform Affymetrix Human Genome U95, then the name of the package is the string that must be in this field. If there is no annotation package for it, you can use Entrez gene symbols or IDs to name genes; in this case use GeneName or GeneID, respectively, and BicOverlapper will search for annotations directly on Entrez Gene and QuickGO\(^1\)

\(^1\)Note that this method is slower and sometimes less reliable than the use of BioConductor packages. Also, the GO significance tests are not available if there is no information about the
Table 2.1. Microarray Data File Format

<table>
<thead>
<tr>
<th>Organism_name/platform</th>
<th>colName1</th>
<th>colName2</th>
<th>...</th>
<th>colNameM</th>
</tr>
</thead>
<tbody>
<tr>
<td>rowName1</td>
<td>expr11</td>
<td>expr12</td>
<td>...</td>
<td>expr1M</td>
</tr>
<tr>
<td>rowName2</td>
<td>expr21</td>
<td>expr22</td>
<td>...</td>
<td>expr2M</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rowNameN</td>
<td>exprN1</td>
<td>exprN2</td>
<td>...</td>
<td>exprNM</td>
</tr>
</tbody>
</table>

Table 2.2. Bicluster File Format

<table>
<thead>
<tr>
<th>Number_of_biclusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>bicluster_set_1</td>
</tr>
<tr>
<td>#rows_bic1.1 #columns_bic1.1</td>
</tr>
<tr>
<td>row1 row2 ... rowN</td>
</tr>
<tr>
<td>col1 col2 ... colN</td>
</tr>
<tr>
<td>#rows_bic1.2 #columns_bic1.2</td>
</tr>
<tr>
<td>row1 row2 ... rowN</td>
</tr>
<tr>
<td>col1 col2 ... colN</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>bicluster_set_2</td>
</tr>
<tr>
<td>#rows_bic2.1 #columns_bic2.1</td>
</tr>
<tr>
<td>row1 row2 ... rowN</td>
</tr>
<tr>
<td>col1 col2 ... colN</td>
</tr>
<tr>
<td>#rows_bic2.2 #columns_bic2.2</td>
</tr>
<tr>
<td>row1 row2 ... rowN</td>
</tr>
<tr>
<td>col1 col2 ... colN</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Biclusters files, although simple text files, have extension .bic to distinguish them from microarray files (.txt). Note also that microarray format uses tabs as delimiters, while bicluster format uses blank spaces (this is done to fit with bicluster files generated by biclustR package [1] and BicAT [2]). You can have several bicluster sets in a single bicluster file, each one must be preceded by a one-line description of the bicluster set. In order to correctly link microarray and bicluster visualizations, the names of rows and columns must be exactly the same in the microarray and bicluster files.

Transcription networks follow SynTReN [3] XML format for graphs. The minimal information necessary for this format is described in fig. 2.1. We are working to support more extended formats as GML or GraphML.

Please be strict with the formats. Even small errors could make the program not to load the file correctly, or to fail after opening some of the visualizations.
2.1. File Formats

```xml
<GeneNetwork>
<Nodes>
<Node id="0"> name = "name0" type = "type0" >
</Node>
<Node id="1"> name = "name1" type = "type1" >
</Node>
...
<Node id="n"> name = "name" type = "type" >
</Node>
</Nodes>
</GeneNetwork>
```

Figure 2.1. GML format

Some things to have in mind:

- Do not leave blank lines at the start, middle or end of the documents.

- Separation between fields are blank spaces in Biclustering Results and tabs in Microarray Data.

- Do not use blank spaces or delimiters as names of samples or conditions. Use "_" or "-" instead.

- Do not duplicate gene or conditions names. Use the same names for genes and conditions in all the files.

- Use points (.) as decimal separators, not commas (,)

- Remember that the first line of Microarray Data has as first field a name for the organism/kind of row for the microarray data, and then the condition names.
2.2 Minimal guide to obtain biclustering results

At this stage, maybe you are wondering how to make a biclustering analysis of your microarrays; and then, how to generate the required files for BicOverlapper.

2.2.1 Outside BicOverlapper

If you deal with Affymetrix chips and all you have are the .CEL and .CDF files, a typical way of getting biclustering results is to start with the same steps that in a Differential Gene Expression Analysis by means of R-Bioconductor (see, for example, [4]). Once you get the gene level expression matrix, after making the quality checks, background correction, normalization, etc.; and instead or in addition to making the traditional differential analysis, you can use the R package biclust [1], that provides several biclustering algorithms you can use to analyze your expression matrix (\texttt{exprs(ExpressionSet)}). Finally, you can write to text files both the processed gene expression matrix and the biclustering results with the methods \texttt{write.exprs()} and \texttt{writeBiclusterResults()}. The file written by \texttt{writeBiclusterResults()} must be edited to add a first line with the number of biclusters in the results. The file written by \texttt{write.exprs()} must be edited to specify the organism name and kind of rows in the first row, first column, as explained above.

Besides, you can also use BicAT tool [2] to generate biclustering results, and export them to a text file. This file has the same format that BicOverlapper requires, but you must add two lines at the start, the first one with the number of biclusters found and the second one with a text description of the bicluster set.

2.2.2 Inside BicOverlapper

From version 1.4 on, BicOverlapper integrates several biclustering methods for gene expression analysis. These methods correspond to the methods in package biclust and use its implementation. Currently, they are Bimax [5], xMotifs [6], Cheng and Church [7] and Turner’s Plaid Model [8]. Help about each method is available with the biclust package. They can be run inside BicOverlapper from the Analysis menu.

All the methods allow to write the results to a file. If no path is selected, a default name is given to the file, and it is stored in the current path. You can also add additional information about the biclustering results with the Add description checkbox (see fig. 2.2).

It is usual that biclustering algorithms return a very large number of biclusters. In order to reduce this complexity in results, some authors perform a post-filtering of biclusters, discarding those highly overlapped or excessively large. The methods we present allow a post-filtering of biclusters based on [5], where the user can select the maximum overlap among biclusters (max_o), the maximum number of genes or conditions (max_g and max_c) and the maximum number of biclusters (max_b). The post-filter selects the max_b larger biclusters but with maximum dimension $max_g \times max_c$ that do not overlap with any other more than a $max_o\%$.
2.2. Minimal guide to obtain biclustering results

Bimax
This algorithm searches for biclusters highly over or under expressed. It performs a binarization of the expression matrix, assigning one to the expression levels above a given threshold and zero to the ones below (for high expression search, the opposite for low expression). Then all the biclusters formed by ones are returned.

XMotifs
This biclustering algorithms searches for genes with preserved states across several conditions. A state is a range of expression, and a bicluster may include several
genes, in the same or different states. It is considered as a coherent evolution biclustering.

Figure 2.4. Xmotifs biclustering interface.

The XMotifs interface allows to determine the Number of discrete levels, that will determine the expression value ranges for each state (ideally, two levels should be enough in order to find high and low expression, but its usually not enough, providing very broad ranges). They may also be determined by quantiles instead of by raw expression. The Number of rows, Number of repetitions, Sample size in repetitions and Scaling factor for columns refer to the n_s, n_d, s_d and α parameters in [6].

Cheng and Church

This was the first biclustering algorithm published that was applied to expression matrices. It searches for a bicluster at a time, masking it with random numbers afterwards in order to search for the next different one. Each bicluster is a subset of rows and columns with a high similarity score (the mean squared residue is used, a measure of coherence). A subset of rows and columns is a bicluster if its mean squared residue is below a δ threshold. α is a factor for determining the rows and columns to be deleted in order to speed up the algorithm on a multiple node deletion paradigm. These values are restricted to $\alpha \geq 0$ and $\delta > 1$. See [7] for the details about the algorithm and its parameters.

Figure 2.5. Cheng and Church biclustering interface.
Turner’s Plaid Model

This method [8, 9] is an improvement of the original Plaid Model algorithm [10]. It tries to fit the matrix to a sum of layers plus a background noise. Each of the layers correspond to a bicluster. The method can be modified to group rows, columns or both. The Row release and Column release parameters are values in [0-1] (recommended interval in [0.5-0.7]) that are used as thresholds to remove rows or columns in the layers, depending on row/column homogeneity (the lower they are, the more strict is the search).

Figure 2.6. Turner’s plaid model biclustering interface.
Currently, five visualizations of data can be displayed, as outlined in Table 3.1. Here we will briefly refer to the practical use of these visualizations, specially the Overlapper. For more information please refer to the technical report document, available at http://code.google.com/p/bicluster or to [11]. Resumed interfaces for each visualization are shown in the tables in the Appendix at the end of this document.

<table>
<thead>
<tr>
<th>Visualization</th>
<th>Data</th>
<th>Brief Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heatmap</td>
<td>Microarray</td>
<td>Color coded expression levels for representation of microarray data</td>
</tr>
<tr>
<td>Parallel Coordinates</td>
<td>Microarray</td>
<td>Representation of gene profiles as lines</td>
</tr>
<tr>
<td>Bubble Map</td>
<td>Biclusters</td>
<td>2D Projection of biclusters</td>
</tr>
<tr>
<td>Overlapper</td>
<td>Biclusters</td>
<td>Force-directed graph for Biclusters</td>
</tr>
<tr>
<td>Transcription Network</td>
<td>TRN</td>
<td>Force-directed graph for TRNs</td>
</tr>
<tr>
<td>Word Cloud</td>
<td>Annotations</td>
<td>Representation of gene annotation occurrences</td>
</tr>
</tbody>
</table>

3.1 Microarray Heatmap

To display the microarray heatmap visualization, microarray data must be previously loaded with File/Open Microarray. Once the data are loaded, the option View/Microarray Heatmap is unlocked so you can click on it to display a microarray heatmap instance (see fig. 3.1).

The microarray heatmap can be navigated with the mouse to inspect expression levels, that are enlarged when it is over them. In addition, the gene and condition profiles in which the expression level is in are also enlarged, vertically
and horizontally respectively. The rest of expression levels are shrunk to fit the remaining space in the display. Finally, expression levels and gene and condition tags can be clicked. When it is done, the corresponding rows and/or columns are rearranged to the top left of the heatmap, and its enlargement is maintained. More than one row and column can be selected by pressing a key while clicking.

![Figure 3.1. Heatmap visualization of a 150x20 microarray data matrix. Even with a small number of genes, heatmaps usually are very tall and thin.](image)

3.1.1 Sampled microarray heatmaps

Microarray data matrices can be very large, mainly in the number of rows. The visualization and interaction with large heatmaps is slow, and to avoid this only
sampled matrices are visualized. Only some genes randomly sampled from the original microarray data matrix are visualized, giving an overall impression of how is the dataset. However, when any group of genes is selected in the other visualizations (by parallel coordinates thresholds or by selecting any bicluster), the actual genes are represented and highlighted in the heatmap.

3.2 Parallel Coordinates

To display the parallel coordinates visualization, microarray data must be previously loaded with File/Open Microarray. Once the data are loaded, the option View/Parallel Coordinates is unlocked so you can click on it to display a parallel coordinates instance (see fig. 3.2).

![Parallel coordinates overview](image)

Figure 3.2. Parallel coordinates overview of an expression matrix (top). Selection of the genes profiles for a bicluster, the section of the gene profile corresponding to conditions in the bicluster is colored brighter at the left (bottom).

The most important interaction with parallel coordinates is the setting of the scroll handles by dragging them. These scrolls set threshold limits for the expression levels for the corresponding condition. This way, when you set a threshold, gene profiles that fulfill the new threshold criterium are highlighted. In addition, the remaining scrolls are set to the maximum and minimum expression level values of the highlighted profile set. This is done to help to refine an initial threshold criterium. Therefore, when you set a new scroll limit, only the profiles that fulfil this limit and any other imposed limits are highlighted. To broaden a search, if Ctrl is pressed while releasing a scroll, the visualization will display all the profiles
that fulfil the threshold criteria for the corresponding coordinate, but ignoring any other restriction in the rest of coordinates.

In the case of biclusters, the profiles of the genes in the bicluster are selected. The conditions in the biclusters are placed first (at the left), and the portions of the gene profiles corresponding to conditions in the bicluster are colored with a brighter hue (see fig. 3.2, bottom).

3.2.1 Sampled parallel coordinates

As in the case of heatmaps, large parallel coordinates visualization and interaction is slow, so the whole set of lines is not displayed. Instead, polygons representing 1-fold to 4-fold areas are drawn, in a grey scale (see fig. 3.2, top). Also, lines representing the average value and the maximum and minimum values are drawn. If we select more than 200 gene profiles by setting parallel coordinate thresholds, a blue polygon formed by the maximum and minimum expression values of the selected gene profiles is drawn. If we select less than 200 genes, the actual gene profile lines are drawn.

3.3 TRN Graph

To display the TRN Graph visualization, TRN data must be previously loaded with File/Open TRN. Once the data are loaded, the option View/TRN is unlocked so you can click on it to display a parallel coordinates instance (see Fig 6.5).

The TRN graph initially reconfigures by directed forces, then becoming static. The graph can be navigated by clicking in the background and dragging the whole visualization. By clicking with the right button in the background, the visualization is centered and fitted to the window space. By using the mouse wheel, we can zoom in or out.

When nodes are hovered over with the mouse, they are highlighted. If they are clicked, they keep highlighted until clicked again (we will say that they are selected). To select more than a node simultaneously, press a key while clicking a new node. Nodes can also be dragged to modify their position.

Finally, a text box at the right-bottom of the visualization allows searches by text, so nodes with names that start with the searched text are highlighted (the number of matched nodes appears next to the search box).
Figure 3.3. Transcription Network visualization, representing 200 genes for E. coli. These networks have "small-network" configurations, which roughly means that there are hub nodes with high connectivity and you can reach any node from any other node passing by a low number of intermediate nodes.

3.4 Word Cloud

To display the Word Clouds visualization, a gene expression matrix must be previously loaded with File/Open Microarray. The matrix should have Entrez Gene IDs or symbols or, preferably, gene identifiers corresponding to a BioConductor annotation package already installed (see section 2.1). Once the matrix is loaded, the option View/Word Cloud is unlocked so you can click on it to display a word cloud. A word cloud displays the gene annotations of a selection of genes that must be previously done by means of another visualization. You can have several Word Clouds open at the same time to visualize different annotations.
The Word Cloud displays gene annotations, either descriptions or GO terms, for the genes selected by means of the other visualizations. The gene annotations are retrieved in real time from the installed BioConductor packages or from the Entrez Gene and QuickGO databases. The terms or description are displayed alphabetically sorted, with a size proportional to the number of times that the term or description appear in the selected genes (the number of times is displayed in brackets following the word, see fig. 3.4). Both types of annotations can be split into single words or di-words\(^2\). GO terms may be filtered, so only biological processes (bp), molecular functions (mf) or cellular processes are displayed.

![Figure 3.4.](image)

Figure 3.4. Word clouds for ten highly expressed genes in human brain. Top: words appearing in gene descriptions, one by one (left) and in pairs (right); it can be changed with the “Split” combo box. Center: GO terms annotated, molecular functions (left) and cellular components (right); it can be changed with the “Ontology” combo box. Bottom: biological processes by number of occurrences (left) and p-values (right); it can be changed with the “Size” combo box.

Finally, you can select that the size of the GO terms will depend on the statistical significance of the term instead of on the number of occurrences. In this case, the size is determined by the inverse of the p-value calculated by means of a hypergeometric tests. This value is the probability that a GO term will appear \(n\) times in \(m\) genes randomly selected, being \(n\) the number of genes, among the

\(^2\)A di-word is a combination of two words
selected ones, for which the GO term is actually annotated. Therefore, the lower the value, the more probable is that the GO term is not grouped by chance in the selected genes.

3.4.1 Word Cloud Performance

Note that the Word Cloud needs to search for gene annotations in BioConductor annotation packages or via programmatic access to Entrez Gene and QuickGO. This can take some time, so it is advisable not to select a large number of genes. The search in BioConductor retrieves about 20 genes per second, while the search in the web retrieves around 1 gene per second.

3.5 Bubble Map

To display the Bubble Map visualization, bicluster data must be previously loaded with File/Open Biclustering Results. Once the data are loaded, the option View/Bubble Map is unlocked so you can click on it to display a bubble map instance.

The Bubble map draws biclusters as colored circles (bubble) in a static display (see Fig 3.5). The display can be navigated by clicking in the background and dragging the whole visualization. By clicking with the right button in the background, the visualization is centered and fitted to the window space. By using the mouse wheel, we can zoom in or out.

![Bubble map visualization](image)

Figure 3.5. Bubble map visualization. Biclusters from three biclustering methods are drawn in different colors. 2D projection and transparencies reduce cluttering.
When bubbles are hovered by the mouse, they are highlighted. If they are clicked, they keep highlighted (we will say that they are selected). To select more than a node simultaneously, press a key while clicking a new node. You can also select all the genes and conditions inside an area by drawing a line surrounding it.

Finally, a text box at the right-bottom of the visualization allows searches by text, so bubbles that correspond to biclusters with genes whose name starts with the searched text are highlighted (the number of matched bubbles appears next to the search box).

3.6 Overlapper

To display the Overlapper visualization, Bicluster data must be previously loaded with File/Open Biclustering Results. Once the data are loaded, the option View/Overlapper is unlocked so you can click on it to display an overlapper instance.

The Overlapper draws biclusters as colored rounded shapes (hulls) in a dynamic display (see fig. 3.6). Each hull contains circles (genes) and squares (conditions) grouped by the corresponding bicluster. Hulls overlap if they share some of the genes or conditions. Hulls and nodes are in continuous movement until they reach an optimal configuration and visualization becomes static or almost static.

The display can be navigated by the top-right overview. This overview shows the whole display, with the portion displayed highlighted by an orange square. By clicking on this square and dragging it, the graph can be navigated.

When hulls are hovered over with the mouse, they are highlighted. When a node (gene or condition) is hovered by the mouse, it is highlighted, along with all the nodes that are grouped with it in at least one of the biclusters. Nodes and hulls can be selected by clicking on them when they are highlighted. To select a hull implies the selection of all the nodes in it. More than one node or hull can be selected by pressing a key while clicking them.

At the bottom of the display, there is a toolbar with several interaction options. When hovered, the buttons show a label with a brief explanation of their function. Table 6 in the Appendix explains them in more detail.
Figure 3.6. An example of the Overlapper visualization for five biclusters. Visualization elements and options detailed in the figure.
Chapter 4
Data Interaction

Data analysis is performed by interaction with the data visualizations described above. The visualizations are inspected, then we select or search for some interesting items (genes, conditions or both), visualizations are reconfigured to focus on those items, and the loop starts again up to obtaining enough insight in the data. Data interaction is therefore focused in three actions:

- **Select:** items are usually selected by clicking on them, reconfiguring the visualization to highlight them. Selected items change their color to a different, identifiable one (by default, blue). Selected items can be exported to a text file with the menu option *File/Export Selection*. The selection history is recorded, so you can use ctrl-Z and ctrl-Y to go back and forward in selections.

- **Hover:** items are hovered by moving the cursor over them, being highlighted in the visualization, by changing the items’s color to a brighter one (by default yellow).

- **Search:** one or more items are actively searched for, and they are highlighted if found. BicOverlapper allows textual searches for genes in some of the visualizations (TRN, Bubble map and Overlapper). The search for genes in the Bubble map highlights the biclusters that contain the gene. In addition, the option in the menu *Analysis/Search* allows searches by any textual fields, usually gene and condition names, but also gene annotations, etc.

In the appendix 6.5 you can find several tables detailing the interaction with each visualization.
5.1 Color configuration

All the visualizations allow the configuration of colors used for main drawing elements. Some of the colors are also linked for most of the visualizations:

- **Selection**: color used to highlight selected entities (genes, profiles or biclusters). Entities are usually selected by clicking on them. Default selection color is blue.

- **Hover**: color used to highlight hovered entities, which is usually done by placing the cursor over them. Default hover color is yellow.

- **Search**: some of the visualization have text boxes to do searches by name of genes or conditions. All entities that match to these searches are highlighted by this color. Default search color is magenta.

- **Bicluster sets**: there are three colors defined to draw biclusters on different bicluster sets, shared by the bicluster visualizations. Default colors for biclusters are purple, orange and spindrift blue.

The color configuration panel can be activated with the interactions shown at Table 5.1. All the visualizations have similar interfaces for color configuration, in fig. 5.1 is shown the color configuration panel for Overlapper.

<table>
<thead>
<tr>
<th>Visualizations</th>
<th>Activation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heatmap</td>
<td>Right-click in the background</td>
</tr>
<tr>
<td>Parallel Coordinates</td>
<td>Right-click in the background</td>
</tr>
<tr>
<td>TRN Graph</td>
<td>Right-click in the bottom bar</td>
</tr>
<tr>
<td>Bubble Map</td>
<td>Right-click in the bottom bar</td>
</tr>
<tr>
<td>Overlapper</td>
<td>Click on ”color configuration” button</td>
</tr>
</tbody>
</table>

Table 5.1. Color configuration activation
For each configurable item, the item’s name, its current color and a button to change it are displayed. “Selection”, “Search”, “Hover”, “Set 1”, “Set 2” and “Set 3” colors are updated for all the visualizations that use them.

5.2 Projects

Your project can be saved, keeping the current opened files and visualizations, and the current selection.

- **File/Save Project**: saves the current data, display information (size and location of each window) and the current selection, into a xml file.
- **File/Load Project**: loads the data and displays the windows of a selected project.
- **File/Load Last Project**: loads the data and displays the windows of the last saved project.
- **File/Load Recent Project**: loads the data and displays the windows of one of the four last saved projects.
Chapter 6
Usage: A practical case

When you start BicOverlapper, an empty window with three menu options pops up:

- **File**: different options to load files
- **View**: different options to visualize information from the files loaded
- **Help**: It contains details related to the BicOverlapper project, authorship and contact information

![Figure 6.1. Microarray data file open dialog.](image)

6.1 Microarray Data Analysis

We are going to analyze the data from a microarray data experiment synthetically generated by SynTReN [3] from E. coli known transcription regulations. We will center on 200 genes and 10 experiments, each one replicated. Although simple,
this example will help as first approach to the framework and provide an excellent opportunity experiment its potential.

The first thing we are going to do is to load the expression levels of our microarray data. To achieve that, we go to File/Open Microarray and choose, in the installation folder, data/ecoli/ EcoliSyntren.txt (see fig. 6.1). In a moment, a message tells us that the file is loaded. Note that, for larger microarray data (thousands of genes per hundreds of conditions), the load process would need some seconds to load.

![Figure 6.2. At the left, the microarray heatmap as it loads, at the right, microarray heatmap with distortion.](image)

Now, if we visit the View menu, two options are unlocked: Microarray Heatmap and Parallel Coordinates. Lets click on Microarray Heatmap. A new window pops up with a typical microarray data heatmap (see fig. 6.2). This visualization by itself allows to watch at the whole raw microarray: you can navigate through the heatmap, where rows are genes and columns are experiments. Expression levels are in a blue-white-red scale, where blue colors are for low expression levels and reds for high expression levels, becoming paler is they are close to the mean. By navigating through the matrix, selected expression levels are distorted, amplifying the corresponding gene and condition profiles, along with their gene and condition names. We can observe that the genes at the bottom of the heatmap, are bright green. These are 10 artificial genes that we have added with low expressions through all
the experiments.

![Image](image1)

Figure 6.3. a) Parallel coordinates as they are loaded. b) Parallel coordinates after the selection of genes with the highest expression levels for experiment E10B, patterns are revealed in parallel coordinates and microarray heatmap. c) Refinement of the genes that have also low expression levels for experiment E1A.

Now, select *Parallel Coordinates* in the *View* menu. A new window pops up with the parallel coordinates, an entangled mall of lines that flow through 20 parallel vertical lines, each one with the name of one of the experiments in our data (see Fig 6.3). Each of the polygonal lines correspond to a gene profile. Place the
window where you feel more comfortable with it, allowing to see the heatmap at the same time.

Without further interaction, this is a noisy view like the heatmap, since all the gene profiles are being displayed. But now we can filter gene profiles by using the scrolls at the ends of the vertical axis. For example, take the bottom scroll of the last condition \(E10B\) and put it at around 0.95. You will get approximately 20 profiles, those of the genes that have an expression level over 0.95 for condition \(E10B\). Also, heatmap rows are rearranged and distorted to show the same gene profiles.

With this simple movement, some patterns can be seen: \(E10A\) and \(E10B\) show a strong correlation, shared in part with \(E9A, E9B, E7A, E7B\) and inverted in \(E1A\) and \(E1B\). Now take \(E1A\) upper scroll and set it down to 0.20. A narrower overall profile for around 10 genes appears.

You can see that the other scrolls have automatically been set to the uppermost and lowermost expression levels of the selected genes for each condition. If you try to drag back the \(E1A\) upper scroll to a higher level, nothing happens. Dragging a scroll adds or removes the profiles that, while in the limits of all other coordinates, are also in the new limits set for the coordinate. If we want to take all profiles that are just within the limits of the dragged coordinate, press \(Ctrl\) while dragging the scroll.

Take a time to play with parallel coordinates. You will see other overall relationships between genes that can lead to draw preliminary conclusions about the microarray. When you are done, select the initial group of gene profiles with high expression levels in \(E10B\).
6.2 Word Cloud Analysis

Following the above discussed example, we can now identify which annotations correspond to the 10 genes selected in fig. 6.3c. We can open two word clouds in the View/Word Cloud menu option. Initially, if there is any selection (like in this case), the program searches for annotations for the selected genes. It will take some seconds and then the Word Cloud will display the words with a size proportional to their frequency in the genes. Then, we can play with the combo boxes at the bottom of the Word Clouds in order to select the type of gene annotations, the split of words or, in the case of GO terms, the kind of ontology or the use of p-values to determine size. Fig. 6.4 illustrates the di-word frequency in gene descriptions and the occurrences in cellular component GO terms. We can quickly see that 3 of the 10 genes are related to membrane, and other close annotations (plasma membrane, cell outer membrane).

Figure 6.4. Word clouds for the selection in parallel coordinates. Two word clouds are displayed for the annotations selected with parallel coordinates in fig. 6.3c. The left one shows frequent combinations or two words in gene descriptions. The right one shows the complete GO cellular component terms for these genes, revealing a relationship with the membrane.

\footnote{Note that this latter option is only available for expression matrices with row identifiers related to a BioConductor annotation package.
6.3 TRN Data Analysis

Now that we are used with our microarray, let’s load available transcriptional knowledge for the E. coli, as a TRN data. Go to the File menu and click on Open TRN and select Ecoli190.xml, in the same folder. After the file is loaded, see that the name of the working desktop has changed to EcoliSyntren.txt|Ecoli190.xml. By having separate files for microarray, TRN and biclusters, you can combine the microarray data with different bicluster results or TRNs.

Now, in the View menu, Transcription Network is unlocked. Note that, for a correct analysis and to avoid program failures, the TRN loaded must have as node names the same gene names that we have in the microarray (additionally, other nodes can be in the TRN). When clicking on Transcription Network, a third window pops up, with an entangled network that quickly disentangles thanks to force directed layout, letting to see transcription relationships (see fig. 6.5).

![Transcription Network](image)

Figure 6.5. In pink, two genes searched, those which start with fum. The blue genes are the ones selected by parallel coordinates, most of them in the same branch of the network.

Nodes have gene names, and dark grey (activation) or light grey (inhibition) edges connect transcriptionally regulated genes. TRNs have a small-network configuration, with hub genes regulating a high number of other genes. In the TRN,
we can move node positions (by dragging nodes), zoom in and out (with the mouse wheel), navigate the graph (by clicking in the background and dragging), fit the graph in the screen (right-click on the background), search for gene nodes with the bottom-right text box and select nodes by clicking them.

Some gene nodes are highlighted by a blue stroke, corresponding to the gene profiles selected in the parallel coordinates. If we have selected the gene profiles high on E10B, we can see that the corresponding genes are mainly in the \textit{rpoE}rseABC family, but there are other genes, not so close in the TRN, with these high profiles, as \textit{fucAO} or \textit{fucPIKUR}.

Let’s search for \textit{lrp}. A pink box highlights this gene. Select it by clicking. See that parallel coordinates and heatmap now show \textit{lrp} expression levels. Now select \textit{gltBDF}, near to \textit{lrp}. Now, by maintaining pressed a key while clicking, select \textit{lrp} in addition to \textit{gltBDF}, and also select \textit{ileIH}. You can see that their expression profiles are very similar. Now, while pressing a key, select also \textit{lysU}, \textit{livJ} and \textit{kbl_tdh}. Their behavior is just the inverse to \textit{lrp}, as can be seen by the inhibition edges in the TRN.

6.4 Bicluster Analysis with Bubble map

Bicluster analysis is the main focus of BicOverlapper, so let’s take some time with it. Load the bicluster data file \textit{turnerSpectralBics.txt} with \textit{File/Open Biclustering Results}. This file has the biclusters found by Turner Plaid Model and Spectral Biclustering in our E. coli synthetic microarray. Note that gene and condition names in the microarray file must coincide with gene and condition names in the bicluster file.

Now, select \textit{View/Bubble Map} to show a Bubble map visualization of biclusters. This is a 2D-projection of biclusters depending on the genes and conditions grouped by them. If two biclusters are near, or partially overlapped, they are likely to share genes or conditions. Each bicluster is a transparent circle, different colors identifying different biclustering methods. The size conveys the number of expression levels grouped by the bicluster.

As in the TRN, you can zoom in and out, fit to the screen, navigate the display, search for gene or condition names (highlighting the biclusters that contain such gene or condition) and select single biclusters (see Fig 6.6).

Let’s select \textit{Turner2}, the biggest purple bicluster of the two at the left bottom of the display (biclusters are named with the bicluster set name plus an number). Click on it. Parallel Coordinates, TRNs and Heatmap reconfigure to highlight the genes and conditions in \textit{Turner2}. The Parallel Coordinates axes have been rearranged to show at the left (in a brighter color) the conditions grouped by \textit{Turner2}. The same happened in the microarray, distorting the corresponding rows and columns. TRN highlighted all the genes in the bicluster, most of them in the same families (\textit{rpoE}rseABC and \textit{cpzAR}), but not all. For example, \textit{uhpT} is far away and has been grouped with the rest. You can now select \textit{uhpT} on the TRN (or any other gene of your interest), to further inspect its profile, see if it is in some other biclusters, etc. Take your time to play with other genes and biclusters and
Figure 6.6. Bicluster Turner2 has been selected in the bubble map (int the top-right window, the bubble wrapped in blue). Profiles for the genes grouped by Turner2 are selected in parallel coordinates (top left), with axes reordered to show the conditions in the bicluster at the left, and the segment line brighter. Heatmap (right) has also reordered and distorted the rows and columns corresponding to genes and conditions in the bicluster. Finally, the TRN graph (bottom left) highlights nodes corresponding to genes in the bicluster. Strong correlations for some of the genes in the bicluster for conditions not in the bicluster are revealed by the parallel coordinates. According to the TRN graph, most of the genes in the bicluster are in the same two bottom left regulation groups, but some of them are not directly related.

try to find some relevant patterns.

6.5 Bicluster analysis with Overlapper

Although Bubble map helps to inspect biclusters, and see their biological relevance in the other views, 2D-projection is not good enough to reflect the degree of coincidence and interrelationship between biclusters. For this, the Overlapper is used. Select View/Overlapper. A new window pops up. This is a huge one, so maybe you have to close or reorder the other windows (see fig. 6.7). The visualization needs a couple of minutes to understand, but once done it’s very useful. Please
read section 3.6 for a full description of the visualization and interaction.

Figure 6.7. Overlapper and the other visualizations displayed altogether.

First thing we can appreciate is that biclusters are much more overlapped than what the bubble map showed, being Spectral biclusters (orange hulls), much more overlapped than Turner biclusters (purple ones). Also, both biclustering methods coincide in some of the genes and conditions related. For a more detailed view, click on the piechart button (the one with the radial, blue and red, circle). Now piecharts are drawn for genes and conditions that are in more than one bicluster.

This way we highlight sets of genes grouped together twice or thrice for Turner biclustering (groups of purple, two-three sector piecharts), or highly relevant genes and conditions that appear in several biclusters of both methods (piecharts with lots of sectors, both purple and orange). You can show or hide labels on the nodes with the "i" button, and search for node (gene or condition) names.

See conditions as E4A and E4B or E1A and E1B (if you don’t find them you can search for them with the textual search box at the right-bottom). Observe how they are positioned by pairs. This is logical, because in this case the experimental conditions are experiments replicated twice, so biclustering methods tend to group together such pairs. Search for some relevant genes, as *aspA* and *arcA*, or *lysU*, *lacI* and *livJ*. Let's select, by clicking and maintaining a key pressed, *lysU*, *lacI*, *livJ*, *E1A* and *E1B* (see Fig 6.8). You can also draw a line around to select them all at once. Patterns in parallel coordinates and heatmap reveal that the three genes have a strong correlation, under *E1* conditions but also under the rest. They are mainly grouped by Spectral biclustering (orange), as we can see in the bubble map and in the predominance of orange piechart sectors. Finally, *livJ* and *lysU* are related in the TRN, but *lacI* is very far. However, Spectral biclustering groups the
three together in various biclusters. Have we discovered an unknown relationship? These are the kind of things that are expected to be discovered by the use of the tool: to have a broad view of the problem and to be capable of focusing in certain details, with the help of different views, specially the Overlapper, that helps us to aim efforts in highly grouped genes and conditions.

The number of biclusters and their overlaps may be high for some biclustering algorithms. You can simplify the display in different ways. First, you can hide hulls if they clutter the visualization (Hide hulls button or key h), or hide just their contours (key x). Second, you can remove from the visualization the nodes with low degree of overlap with the threshold filter (the buttons marked with "∨" and "∧"). We can press repeatedly the "∧" button to do the filtering more strict. With this filtering, we can "cut branches and get the trunk" of biclustering analysis. However, you must be careful if more than one biclustering method is in the analysis, because if one method returns much more biclusters than the others, it surely will be favored by this threshold. Third, you can display just the dual nodes instead of every gene and condition node. The dual nodes resume all the nodes that are together in every bicluster, so they represent tight relationships among genes and/or conditions.

For example, if we click three times the "∧" button, we reduce the display to the genes and conditions that are at least grouped by three biclusters. Now,
some genes and conditions grouped together in three or more biclusters are located nearly, thus forming a kind of "superbicusters" (see fig. 6.9, left). This is even more clear if we switch to dual nodes, by pressing the u key (fig. 6.9, right). Nodes now represent groups of genes and conditions grouped exactly by the same biclusters (its size represents the number of genes and conditions, the sectors, the number of biclusters they are in together). In both cases, the hull contours have been removed by pressing the x key.

Figure 6.9. Overlapper filtered by filtering out the nodes grouped less than three times. Left: genes and condition nodes. Right: dual nodes.

We can also select genes or conditions in other visualizations and see the corresponding biclusters in the Overlapper. For example, search in the TRN for lrp gene and select it. Two Turner biclusters have it. In both, it is grouped with E10 conditions and fadBA, a gene not directly related in the TRN (see fig. 6.10).

Now that you know the basics of BicOverlapper, take your time doing analysis tasks similar to the examples given. Of course, this is a synthetic example and any discovery has no true biological meaning. You can try with your own results sets and see what happens. And please if you have any questions, ideas, suggestions or critics, email us, we are eager to improve the tool with your feedback!
Figure 6.10. This gene is grouped by two biclusters in Turner Model, thus revealing a bicluster relationship with fadBA and E10 conditions.
APPENDIX: INTERFACE TABLES

Table 1. Heatmap Interface

<table>
<thead>
<tr>
<th>Option</th>
<th>Local effects</th>
<th>Other visualizations effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigate over a expression level</td>
<td>Distortion of gene and condition profile</td>
<td>None</td>
</tr>
<tr>
<td>Click on expression level</td>
<td>Distortion of gene and condition profile</td>
<td>Selection of gene and condition related</td>
</tr>
<tr>
<td></td>
<td>Reordering of rows and columns</td>
<td>Selection of biclusters that group the gene and condition</td>
</tr>
<tr>
<td>Click on gene name</td>
<td>Distortion of gene profile</td>
<td>Selection of the gene or the biclusters grouping that gene</td>
</tr>
<tr>
<td>Click on condition name</td>
<td>Distortion of condition profile</td>
<td>Selection of the condition</td>
</tr>
<tr>
<td></td>
<td>Reordering of columns</td>
<td>Selection of the biclusters grouping that condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRN colors nodes with the expr. levels for the condition</td>
</tr>
</tbody>
</table>

Table 2. Parallel Coordinates Interface

<table>
<thead>
<tr>
<th>Option</th>
<th>Local effects</th>
<th>Other visualizations effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag a scroll</td>
<td>Selection of gene profiles with expression</td>
<td>Selection of genes</td>
</tr>
<tr>
<td>arrow</td>
<td>profiles in the limits of all the axes</td>
<td>Selection of biclusters containing at least one of these genes</td>
</tr>
<tr>
<td></td>
<td>Auto-scrolling for the rest of axes</td>
<td></td>
</tr>
<tr>
<td>Drag a scroll</td>
<td>Selection of gene profiles with expression</td>
<td>Selection of genes</td>
</tr>
<tr>
<td>arrow + Ctrl</td>
<td>profiles in the limits for only this axis</td>
<td>Selection of biclusters containing at least one of these genes</td>
</tr>
<tr>
<td>Drag an axis</td>
<td>Horizontal reordering of the axis</td>
<td>None</td>
</tr>
</tbody>
</table>
Table 3. TRN interface

<table>
<thead>
<tr>
<th>Option</th>
<th>Local effects</th>
<th>Other visualizations effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag a node (gene)</td>
<td>Change its position</td>
<td>None</td>
</tr>
<tr>
<td>Roll mouse wheel</td>
<td>Zoom in or out</td>
<td>None</td>
</tr>
<tr>
<td>Drag the background</td>
<td>Navigate the graph</td>
<td>None</td>
</tr>
<tr>
<td>Search text</td>
<td>Highlight genes that contain the text</td>
<td>None</td>
</tr>
<tr>
<td>Click a non selected node</td>
<td>Select the node</td>
<td>Selection of genes and biclusters it is in</td>
</tr>
<tr>
<td>Click a selected node</td>
<td>De-select the node</td>
<td>De-selection of genes and biclusters it is in</td>
</tr>
<tr>
<td>Ctrl+click a non selected node</td>
<td>Select the node in addition to other selections</td>
<td>Selection of genes and biclusters it is in in addition to other selections</td>
</tr>
</tbody>
</table>

Table 4. Word Cloud interface

<table>
<thead>
<tr>
<th>Option</th>
<th>Local effects</th>
<th>Other visualizations effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description box</td>
<td>Select the type of annotations</td>
<td>None</td>
</tr>
<tr>
<td>Split box</td>
<td>Select the type splits</td>
<td>None</td>
</tr>
<tr>
<td>Size box</td>
<td>Select the characteristic used for size</td>
<td>None</td>
</tr>
<tr>
<td>Ontology box</td>
<td>In case of GO terms, select the ontology</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 5. Bubble map interface

<table>
<thead>
<tr>
<th>Option</th>
<th>Local effects</th>
<th>Other visualizations effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag a bubble (bicluster)</td>
<td>Change bubble position</td>
<td>None</td>
</tr>
<tr>
<td>Roll mouse wheel</td>
<td>Zoom in or out</td>
<td>None</td>
</tr>
<tr>
<td>Drag the background</td>
<td>Navigate the map</td>
<td>None</td>
</tr>
<tr>
<td>Search text names</td>
<td>Highlight biclusters that group genes/conditions with this text</td>
<td>None</td>
</tr>
<tr>
<td>Click a bubble</td>
<td>Select the bubble</td>
<td>Selection of bicluster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selection of genes/conditions in the bicluster</td>
</tr>
</tbody>
</table>
Table 6. *Overlapper* interface

<table>
<thead>
<tr>
<th>Option</th>
<th>Local effects</th>
<th>Other visualizations effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag a node</td>
<td>Change node position</td>
<td>None</td>
</tr>
<tr>
<td>Key pressed + drag a node</td>
<td>Fix node position</td>
<td>None</td>
</tr>
<tr>
<td>Drag small square in the top-right view</td>
<td>Navigate the graph</td>
<td>None</td>
</tr>
<tr>
<td>Hover over a node</td>
<td>Highlight the node</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Show the node name</td>
<td>Selection of the gene or condition</td>
</tr>
<tr>
<td></td>
<td>Highlight all neighbor nodes</td>
<td>Selection of the biclusters with the gene or condition</td>
</tr>
<tr>
<td>Hover over a hull</td>
<td>Highlight the hull</td>
<td>None</td>
</tr>
<tr>
<td>Click on a node</td>
<td>Select the node</td>
<td>Selection of the genes and conditions</td>
</tr>
<tr>
<td></td>
<td>Show the node name</td>
<td>in the hull</td>
</tr>
<tr>
<td>Right-click on a gene node</td>
<td>Retrieve and show gene annotations</td>
<td>None</td>
</tr>
<tr>
<td>Click on a hull</td>
<td>Select the hull</td>
<td>Selection of the genes and conditions</td>
</tr>
<tr>
<td></td>
<td>Select all nodes in the hull</td>
<td>in the hull</td>
</tr>
<tr>
<td></td>
<td>and show their names</td>
<td></td>
</tr>
<tr>
<td>Click and drag the mouse out of a node</td>
<td>Select nodes wrapped by the</td>
<td>Selection of the genes and conditions</td>
</tr>
<tr>
<td></td>
<td>drawn line</td>
<td>in the wrapping area</td>
</tr>
<tr>
<td>Pause-restore simulation button</td>
<td>Pauses/restores the force simulation</td>
<td>None</td>
</tr>
<tr>
<td>Show overview button</td>
<td>Shows-hides top-right overall view</td>
<td>None</td>
</tr>
<tr>
<td>Zoom out-in buttons</td>
<td>Zoom out-in the graph (unstable)</td>
<td>None</td>
</tr>
<tr>
<td>Show names button</td>
<td>Show-hide node labels</td>
<td>None</td>
</tr>
<tr>
<td>Absolute-relative label size button</td>
<td>Make label size change with connection degree</td>
<td>None</td>
</tr>
<tr>
<td>Increase-decrease name size buttons</td>
<td>Increase or decrease font size</td>
<td>None</td>
</tr>
<tr>
<td>Increase-decrease threshold buttons</td>
<td>Alter by one the number of biclusters a node must be in order to be drawn</td>
<td>None</td>
</tr>
<tr>
<td>Hide-draw zones button</td>
<td>Hide or show hulls</td>
<td>None</td>
</tr>
<tr>
<td>Draw node as piecharts button</td>
<td>Hide or show piecharts</td>
<td>None</td>
</tr>
<tr>
<td>Increase-decrease cluster size buttons</td>
<td>Alter the spring length</td>
<td>None</td>
</tr>
<tr>
<td>Increase-decrease repulsion buttons</td>
<td>Alter gravitational force</td>
<td>None</td>
</tr>
<tr>
<td>Change to relative size button</td>
<td>Alter node size to convey connection degree</td>
<td>None</td>
</tr>
<tr>
<td>Hide nodes button</td>
<td>Draw or hide nodes</td>
<td>None</td>
</tr>
<tr>
<td>Color configuration button</td>
<td>Display a color configuration panel</td>
<td>None</td>
</tr>
<tr>
<td>Export image button</td>
<td>Display a save dialog to save visualizations as an image file</td>
<td>None</td>
</tr>
<tr>
<td>Search text box</td>
<td>Search for input text in node labels</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Highlight nodes found</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If only one node is found, centers on it</td>
<td></td>
</tr>
<tr>
<td>Hit c key</td>
<td>Draw hulls as polygonal or spline shapes</td>
<td>None</td>
</tr>
<tr>
<td>hit t key</td>
<td>Draw bicluster names</td>
<td>None</td>
</tr>
<tr>
<td>Hit x key</td>
<td>Show/hide hull contours</td>
<td>None</td>
</tr>
<tr>
<td>Hit u key</td>
<td>Draw simple/dual nodes</td>
<td>None</td>
</tr>
<tr>
<td>Hit e key</td>
<td>Show/hide edges</td>
<td>None</td>
</tr>
</tbody>
</table>
Bibliography

